

Impacting the future of the enterprise technology ecosystem

Achieving Significant Capacity Improvements on the IBM z13: User Experience

Todd Havekost, USAA

Session #18345

SHARE is an independent volunteer-run information technology association that provides education, professional networking and industry influence.

Copyright © 2016 by SHARE Inc. 💿 🕥 😒 😑 Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerive 3.0 license

- USAA Context and Configuration
- z13 Capacity Concepts and Initial Experiences
- Key Processor Hardware Metrics
- Actions to Improve Capacity and Impact on Metrics
- Financial and Other Considerations

- Financial services company facilitating the financial security of the military community
- IT at USAA plays a critical role in fulfilling this mission
 - 100% availability 24x7 so that service members can rapidly complete their business online wherever deployed
 - Cost-effective to support highly competitive products and services for our members

Except where observice rected, this work is licensed under a Clearling Commons Attribution-NonCommercial-NoCense 3.6 license http://creativecommons.org/licenses/by-no-nd/3.0/

Configuration Overview

- Software z/OS 2.1, IMS V13, CICS V5.1, DB2 V11, MQ V8
- Workload 3 primary sysplexes across 4 CECs

CEC A	CEC B	CEC F	CEC G
Prod OnIn 1	Prod OnIn 2	Prod OnIn 3	Prod OnIn 4
Prod OnIn 5	Prod OnIn 6	Prod OnIn 7	Prod Onln 8
Prod Spcl 1		Prod Spcl 2	
Bank OnIn 1	Bank OnIn 2	Bank Onln 3	Bank OnIn 4
		Bank Spcl 1	Bank Spcl 2
Dev Onln 1	Dev Onln 2	Dev Onln 3	Dev Onln 4
	Dev Spcl 1		

Except where otherwise meted, this work is increased under a Creative Commany Attribution-NonCommercial-NoCents 3.6 homes http://creativecommone.org/ficinaee/by-no-nd/3.0/

z13 versus zEC12 Hardware Comparison

- CPU
 - -5.5 GHz
 - Enhanced Out-Of-Order
- Caches
 - -L1 private 64k i, 96k d
 - L2 private 1 MB i + 1 MB d
 - -L3 shared 48 MB / chip
 - -L4 shared 384 MB / book

z13

CPU

- -5.0 GHz
- Major pipeline enhancements
- Caches
 - -L1 private 96k i, 128k d
 - L2 private 2 MB i + 2 MB d
 - L3 shared 64 MB / chip
 - L4 shared 480 MB / node
 plus 224 MB NIC

- Performance variability is generally related to fast clock speed and physics
 - increasing memory hierarchy latencies relative to micro-processor speed
 - increasing sensitivity to frequency of "missing" each level of processor cache
 - workload characteristics are determining factor, not application type
- z13 performance comes from improved IPC (instructions per cycle) in both the micro-processor and the memory subsystem (clock speed is 10% slower but tasks run on average 10% or more faster)
 - magnitude of improvement in IPC will vary by workload
 - workloads moving into a z13 will likely see more variation than last migration

© 2015 IBM Corporation

	L1MP	RNI	LSPR Workload Ma	tch
	< 3%	>= 0.75 < 0.75	AVERAGE LOW	
L1MP: 3.8%	3% to 6%	>1.0 0.6 to 1.0 < 0.6	RNI: HIGH AVERAGE LOW	LSPR Workload: HIGH+
	> 6%	>= 0.75 < 0.75	HIGH AVERAGE	

Current table applies to z10 EC, z10 BC, z196, z114, zEC12, zBC12 and z13 CPU MF data

© 2015 IBM Corporation

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Eacept where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial NoCents 3.6 license http://creativecommons.org/licenses/by-no-nd/3.0/

LSPR Single Image Capacity Ratios

16way: z13 versus zEC12 Example of Workload Variability

Key Metrics – L1MP (SMF 113 Records)

- L1 Cache Misses per 100 Instructions
 - Frequency that required data is not present in L1 cache (making processor wait)

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Escept where otherwise robed, this work is homeoid under a Creative Commons Attribution-NonCommercial-NoCentre 3 d homeo http://creativecommons.org/Rossee/by-oc-nd/3.0/

Key Metrics – Relative Nest Intensity (RNI)

- How deep into the shared cache and memory hierarchy ("nest") the processor must go to retrieve data
- Access time increases significantly with each additional level (increasing processor wait time)
- 2.6*(0.4*L3P + 1.6*L4LP + 3.5*L4RP + 7.5*MEMP) / 100

zEC12-711	z13-711
1.41	1.67

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Estept where observice roted, this work is licensed under a Clearling Commany Attribution-NonCommercial-NoCence 3.6 license http://creativecommons.org/licenses/by-no-nd/3.0/

Key Concepts – HiperDispatch

- Interfaces with PR/SM & z/OS Dispatchers to align work to logical processors (LPs) & align LPs to physical CPs
- Repeatedly dispatching the same work to the same or nearby CP is vital to optimizing processor cache hits

(© IBM)

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Except where otherwise mated, this work is licensed under a Creative Commons Attribution-NonCommercial-NoCentis 3 G license http://creativecommons.org/Rosesse/by-no-nd/3.br

- Based on LPAR weights PR/SM categorizes logical CPs as
 - Vertical High (VH) 1-1 relationship with physical CP
 - Vertical Medium (VM) has at least 50% share of a CP
 - Vertical Low (VL)

- Work running on VHs will use same L3 cache and usually same L1 & L2 cache
- Work running on VMs & VLs is subject to being dispatched on various CPs

USAA Vertical CP Configurations

	Prod Insurance						
	zEC12	zEC12 711 716 726					
Highs	3	3	5	6			
Mediums	1	1	0	0			
Lows	2	2	0	0			

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Except where observice meted, this work is licenced under a Creative Commons Attribution NonCommercial NoCense 3 C licence http://creativecommone.org/Sciences/by-no-nd/3.d/

Impact of Vertical High CPs on RNI

	Prod Insurance					
	zEC12 711 716 726					
Highs	3	3	5	6		
Mediums	1	1	0	0		
Lows	2	2	0	0		
RNI	1.41	1.56	1.26	1.24		

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

SHARE

Except where otherwise readed, this work is licensed under a Cheative Commons Attribution-NonCommercial-NoCentre 3 G license http://creativecommone.org/licensee/by-no-nd/3.0/

RNI Impact: 711 to 716 (H003)

RNI Impact: 711 to 716 by CP (H003)

RNI Impact: 711 to 716 by CP (H018)

	Prod Insurance			Prod Banking			Dev/Test		
	711	716	726	711	716	726	711	716	726
Highs	3	5	6	0	0	4	0	0	3
Mediums	1	0	0	2	2	0	1	2	0
Lows	2	0	0	1	1	0	1	0	0
RNI	1.56	1.26	1.24	1.35	0.87	0.71	1.24	1.16	0.73

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Except where observice rected, this work is licensed under a Clearly y Commons Attribution-NonCommercial-NoCents 3.6 license http://creativecommons.org/licenses/by-oc-nd/3.0/

Cache Data Lifetime

WLM Topology Report – SMF 99.14

- PR/SM dynamically assigns LPAR CPs and memory to HW chips, nodes and drawers to optimize cache efficiency
- Topology can have big impact on performance

24

 IBM provides tool to display graphically in Excel

Drawer_2				
	Node_1			
		Chip_1	Chip_2	
		M022_02_MIIP003	M022_01_MCPU000	
		M022_02_LIIP004	M022_01_MCPU001	
		H018_02_MIIP005	M022_01_LCPU002	
		H018_02_MIIP006	H018_01_HCPU000	
		H003_02_MIIP005	H018_01_HCPU001	
		H003_02_MIIP006	H018_01_HCPU002	
		H016_02_MIIP005		
		H016_02_MIIP006		
		H016_02_LIIP007		
		H016_02_LIIP008		
		A020_02_MIIP002		
		A020_02_LIIP003		

http://www-03.ibm.com/systems/z/os/zos/features/wlm/WLM_Further_Info_Tools.html#Topology

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Except where observice roted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDensis 3 G license http://creativecommons.org/Normaes/by-no-nd/3.d/

Topology Change

 IBM identified opportunity after initial 716 upgrade; LPAR memory increase forced PR/SM to distribute VHs across

Topology Impact

- Improved % L1 misses sourced from L4 local cache -> RNI
 2.6*(0.4*L3P + 1.6*L4LP + 3.5*L4RP + 7.5*MEMP) / 100
- IBM measured 6% capacity improvement

	L4LP	L4RP	MEMP	RNI
Before	4.38%	0.91%	4.85%	1.48
After	5.84%	0.59%	3.82%	1.31

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Except where observice rested, this work is licensed under a Creative Commons Attribution NonCommercial NoDense 3 G license http://creativecommons.org/ficenses/by-nc-nd/3.d/

Key Metrics – Cycles per Instruction (CPI)

- Processor cycles are spent
 - Productively executing instructions (complex instr. > 1 cycle)
 - Unproductively waiting to stage data (L1 cache or TLB miss)
- "Waiting" does not always mean waiting
 - Enhanced Out Of Order (OOO) execution
 - Other pipeline enhancements

Escept where otherwise noted, this work is licensed under a Creative Commany Attribution-NonCommercial-NoCestis 3.5 license http://creativecommons.org/Normase/by-no-nd/3.0/

Cycles per Instruction & Cache Miss Impact SHARE

Estimated Impact Cache & TLB Misses

Estimated Impact of Cache and TLB Misses (Cycles/Inst) Processor Cycles Per Instruction (Cycles/Inst) L2 Cache Miss Cycle Estimate (Cycles/Inst) L3 On-Chip Cycle Estimate (Cycles/Inst) L3 On-Node Cycle Estimate (Cycles/Inst) L3 On-Drawer Cycle Estimate (Cycles/Inst) L3 Off-Drawer Cycle Estimate (Cycles/Inst) L4 On-Node Cycle Estimate (Cycles/Inst) L4 On-Drawer Cycle Estimate (Cycles/Inst) L4 On-Drawer Cycle Estimate (Cycles/Inst) L4 Off-Drawer Cycle Estimate (Cycles/Inst) L4 Off-Drawer Cycle Estimate (Cycles/Inst) Memory On-Node Cycle Estimate (Cycles/Inst) Memory On-Drawer Cycle Estimate (Cycles/Inst) Memory Off-Drawer Cycle Estimate (Cycles/Inst)

CPI Components and Impact

• Estimated Finite CPI – variable and correlates with RNI

	Prod Insurance			Prod Banking		
	711	716	726	711	716	726
Vertical High	3	5	6	0	0	4
Vertical Med	1	0	0	2	2	0
Vertical Low	2	0	0	1	1	0
RNI	1.56	1.26	1.24	1.35	0.87	0.71
CPI	4.00	3.52	3.46	4.89	3.92	3.48
Est Finite CPI	2.32	1.84	1.79	2.82	1.83	1.47
Est Instr Cmplx CPI	1.68	1.70	1.68	2.07	2.10	2.02

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Escept where otherwise meted, this work is licensed under a Creative Commany Attribution-NonCommercial-NoCents 3.6 homes http://creativecommons.org/Nounaea/by-no-nd/9.0/

Multiprocessing Effect

- Adding CPs increases overhead required to manage interactions between hardware & workloads
- Thus MSU/CP ratios for IBM processor ratings not linear
- Ratings based on LSPR workloads at 90% utilization

Except where otherwise mated, this work is licensed under a Creative Commons Attribution-NonCommercial-NoCentre 3 G license http://creativecommons.org/Rosses/by-ne-nd/3.br

Savings from MSU/CP Ratings

- If workload remains same, CEC utilization decreases, and MP overhead will be minimal
- Lower MSU/CP rating translates directly into reduced MSUs for same workload

CEC	MSUs/CP	vs zEC12-711	vs z13-711
zEC12-711	144.8		-9.7%
z13-711	160.4	10.7%	
z13-716	147.4	1.8%	-8.1%
z13-726	131.3	-9.3%	-18.1%

SHARE

Escept where observice right) this work is licenced under a Clearling Commons Attribution NonCommercial NoCence 3.6 licence http://creativecommons.org/licences/by-no-nd/3.0/

Two-fold Benefits of Deploying Capacity

- Consume less CPU due to operating efficiencies
 - Vertical High CPs
 - Improved LPAR Topology
 - Evidenced by RNI and CPI metrics
- CPU that is consumed translates into fewer MSUs / MIPS
 - Lower processor MSU/CP ratings

Potential Financial Obstacles with ISVs

- Previously converted many ISV licenses from capacitybased to usage-based
- Approached remaining ISVs and explained value proposition for requiring a usage-based agreement
 - Most ISVs were very receptive
 - Two created their first ever usage-based agreements
 - All others ultimately agreed to usage-based terms
- Experience confirmed our previous perceptions about which ISVs were truly "partners"

Subcapacity Alternative

- If single engine speeds or other considerations do not require full capacity models, subcapacity models could be selected to add CPs without increasing hardware capacity
- Improve Vertical CP configurations and likely RNI
- From z13-710 subcapacity models could add 7-15 CPs

Total	zEC12-711	z13-710	z13-617	z13-525
MSUs	1593	1632	1610	1603

Perspectives on HW Capacity

- Review LPAR topology and system multiprogramming level for potential opportunities
- Current economics of software (largest expense, recurring) vs. hardware (smaller expense, one-time) may justify acquisition of additional hardware capacity
 - Similar framework as case IBM is seeking to make for memory
- Consider availability benefit provided by capacity cushion

Capping Impact on Vertical CP Configs

- WLM (group or soft) capping is enforced by PR/SM changes to Vertical CP configuration
 - 6 VHs \rightarrow 2 VMs, 4 VLs
- Concern about impact on delivered capacity
 - Observed small
 RNI increases
 (limited analysis)

Complete your session evaluations online at SHARE.org/SanAn

Except where observice noted, this work is identeed under a Creative Commons Attribution-NonCommercial-NoC http://creative.commons.org/icenses/by-no-nd/3.d/

Complete your session evaluations online at SHARE Except where otherwise noted this work is licensed under a Clearitye Commons Attribution-N http://creativecommons.org/licenses/by-nc-nd/3.0/

40

SHARE Boston 2013

Deploy HW capacity

- Batch mgmt
- Capping off-peak
- LPAR wkld mgmt
- LPAR SW stack
- Application tuning

MLC Expense Reduction Journey 60%

 Sysplex aggregation 40%

40%

20% 0% -20%

Sources

41

- John Burg, "2015 CPU MF Counters Update", Edge 2015 **
- Peter Enrico, "SMF 113 Processor Cache Counter Measurements", Edge 2015
- Gilbert Houtekamer, "How to get more MIPS out of your z13", white paper at www.intellimagic.com
- Gary King, "The Relatively New LSPR and IBM z13 Performance Brief" and "To MIPS or Not to MIPS", SHARE March 2015 **
- Frank Kyne, "HiperDispatch Q&A" and "A Holistic Approach to Capacity Planning", Cheryl Watson's Tuning Letter 2015 No. 4

Complete your session evaluations online at SHARE.org/SanAntonio-Eval

Related Sessions at this SHARE

- Wed. 11:15, Gary King, "To MIPS or Not to MIPS", 304A
- Thur. 10:00, Gary King, "The Relatively New LSPR and the latest zSystems Processors", 304A
- Thur. 11:15, John Burg, "2016 CPU MF Counters Update", 304A
- Fri. 10:00, Cheryl Watson & Frank Kyne, "The Cheryl and Frank zRoadshow", 303B

Except where otherwise noted, this work is licensed under a Creative Commany Attribution-NonCommercial-NoCense 3.6 license http://creativecommons.org/licenses/by-nc-nd/3.0/

Special Thanks

- John Burg and Gary King, IBM
- Gilbert Houtekamer, IntelliMagic
- Frank Kyne, Watson & Walker
- Please complete your session evaluation
- Questions?

